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ABSTRACT

It is shown that the initial-value problem ut = A(Iul-I u), u(x,0) =

u0 (x), where m > 1, has a solution on RN x [0,T) for some T > 0 if

-(-_2+N)

R 1 f(IxR} U0 (x)Idx is bounded independently of R ) 1. The

restriction on u0  is known to be necessary as well by recent results of

Aronson and Caffarelli, so this theorem is the best possible. Many

supplementary results give refined estimates on the solution under various

conditions on u0, establish uniqueness within the existence class, allow

U0 to be a Radon measure, establish continuous dependence on u0  in various

spaces, etc.
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key Words: Porous media equation, initial-value problem, degenerate parabolic

equation
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SIGNIFICANCE AND EXPLANATION

L .

This work etablishes existence of solutions of the initial-value problem

ut A(Iul u), u(x,O) - u0 (x), where m > 1, under the most general

tonditions on u0 . Namely, u0  need only be such that

-'2 +N).r

R f }I u'(xndx: is bounded independently of R ) 1. Aronson

and Caffarelli have shown this requirement to be necessary. Many auxiliary

results re given in the form of estimates on solutions, uniqueness and

continuous dependence theorems, etc.

While the results may be viewed as "technical" in that the main points

consist of estimates of various sorts, the equation treated is of broad

practical interest and the estimates reflect basic properties of the

equation. The results obtained are the only ones known to the authors wherein

the solvability of a realistic nonlinear initial value problem for a partial

differential equation is now understood as completely as in the case of the

heat equation.

CPR 4 ioo

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.



SOLUTIONS OF THE POROUS MEDIUM EQUATION

IN 0 UNDER OPTIMAL CONDITZONS ON INITIAL VALUES

Philippe Benilan, Michael G. Crandall and Michel Pierre

Introduction

This paper concerns the initial-value problem

()u t = A(lul I-u) on aN x (0,T), m > I

u(x.0) m u 0 (x), x e RN

where the interval of existence [0,T), T > 0, depends on the initial data u0 . We are

interested in solving IVP for the largest possible class of functions u0 . In fact, we

will prove a nonlinear version of the result which states that the linear problem

(.u t = Au on U x (O,T)
(0.1)

u(x,0) - u0 (x), x e RN

has a solution on some interval [0,T) if

2
(0.2) f luo(X)Ie clxe dx < " for some c > 0

(Of course, (0.2) guarantees that the solution formula for (0.1) provides a solution on

(0,4/c).) If u0 ), 0 it is know that (0.2) is also necessary for (0.1) to have a solution

u )' 0 on some time interval [0,T), T > 0 ((15]).

Here we prove, without the aid of explicit solutions, that (IVP) has a solution on

some interval [0,T) if

-(N+ -- )

(0.3) sup R f(IXi(Rjluo(x)ld <x

or, equivalently (see the Appendix),

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



(0.3)' sup - )J0 dx().3 UP Ixl'R} 1+ix2 !/(m-i)
R) t (1+IxI

This condition is necessary in the class of nonnegative solutions as has been recently

proved by Aronson and Caffarelli (16].

In fact, we will prove that if 1(u ) is given by

(0.4) 1 (Uo 0 lim sup R j ,xRjlu0(x)lI
r+- R)r

then (IVP) has a solution on a maximal interval [0,T(uo)) with

(0.5) Tu 0 ) c/l(u 0)m
- 1

where c is a constant depending only on N and m. This result implies (IVP) has a

solution defined for all t ) 0 if L(u 0 ) = 0 and (in the class of nonnegative solutions)

we will show the necessity of I(u0 ) - 0 for global-time existence.
0

Let us reconcile the above statements with several of the known solvability results

for (IVP). If u0 e L CRN), then 1(u0 ) - 0 and T(u 0) - . The global time solvability

in this case is known via the nonlinear semigroup theory (see [4], [6]). If u0 e LI(AP) +

7(RN), again (u 0 ) - 0 and T(u0) m. This is also obtainable from known results.

In the other direction, if

2 .-1
(0.6) u0(x) - (a + 1x12) , a,s 0

then the explicit solution

u(x,t) - ( k 2 xt
(T-t) k _m X t "

k - N(m-1) r k
N(m-1)+2 ' 2mN

shows u 'blows up" at k/2=N(X(u0 )) . This verifies that (0.5) is sharp as regards the

functional dependence on L(u 0). Further remarks concerning the sharpness of (0.5) and

"blow up" may be found in the text.
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The existence proof herein relies on rather novel estimates, the main one being an

estimate of

(0.7) v(xt) - u(xt)
1+1xl2 1/m-1)

in L (I?) for t e (0,T(u0 )) in terms of the norm of u0 defined by (0.3). In the

process of obtaining this estimate we use the inequality established by Aronson and Benilan

[1], neaely

(0.8) Aumol I s cc(mN)

for certain nonnegative solutions of (IVP). We prove that if u • 0 satisfies (0.8)

then v - u/(l+Ixl 2 ) 1/ ( M-1 ) can be estimated in La(3 ) by

-_(N 2_

(0.9) sup R M-i f(ixI4R)lu(x,t)ldx, r > 1
Rr

that is (see (0.3)') in terms of averages of v over balls centered at the origin. We

then control the evolution of the quantity (0.9) with time.

The same type of proof also provides various L -estimates of u in terms of various

norms of u0 . We obtain, for instance, u e L (K ) for all t > 0 if

(0.10) suPN f(Ix.-.j.ZlIuO(x)dX < -

The existence theorem is precisely formulated and proved in Section 1, as well as the

LO-estimates mentioned above. The case in which u0  is a measure satisfying the analog

of (0.3) is also treated. Section 2 proves the uniqueness of the solutions obtained in

Section 1. Some simple but useful remarks about the space X of functions u0  satisfying

(0.3) are collected in the Appendix.
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Section 1. Existence

Throughout this section we will be concerned with the problem( ut - A(lul, -u) 0, t > 0, x e RN

(IvT)
u(xO) - uo(x)

where

(1.1) N ) 1 and m > 1

To formulate the main existence results for (IVP) we require several definitions. First,

for each f e LI  (a") and r > 0, lettoc

-(N+ ; 2 V

1.21 Ifr sup R r B IfIR) r R

N
where I f denotes the Lebesque integral of f over K c R and BR - {x e RN,

1x1 ( R). If K - we will simply write If. Note that if fIl is finite for some
r

r > 0, then it is finite for all r > 0. Set

(1.3) x - (e • Lo(3), 1ff1 < -J

and equip X with the norm I Clearly X is a Banach space and I I is anr

equivalent norm on X for any r > 0. If u0 e x we define

(1.4) )  - lu 1 I
rfm

Next, for a e R define

Pa(x)= (1 + xi2)
a

and let

L (PO) {f e Llo(r), f Ifl. <
a loc'' a

be equipped with the norm

Ifil f Ilf
L I (P fI)(a)

We will be considering solutions of (IVP) as curves in X, L (P.) end other spaces

end will be writing "u(t)" in this context. The local-time existence theorem for (IVP)

is stated next. It is made complex by the detailed information we have put in it. Let us

present the theorem and then discuss its nature.
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Theorem E

Existence: There is a constant c, > 0 depending only on N and m and a mapping

U t {(t,u0 ) 1 0 4 t I T(uo), u0 e X} * x

where 4

(1.5) TuO) - cl/(L(u0))
M l 

and T(u 0 1 - if l(u0 1 - 0

with the properties:

(i) If uO e x, then |P /(M.1)U(t,u0 )1 e L c(0,T(u 0)).

(ii) ifQ 
+ 1
N and u0 e x, then

M-1 2

U(*,u 0 ) e CC[O,T(u0 ))i LI (P)

and U(O,u,) - u 0.

(iii) u(t) - U(t,uO ) is a solution of ut - h(ul- u) in the sense of distributions on

RN (O,TluoI]

Estimates: Let

(1.6)T(
r c~ c/lI M- for r ) 1

These are constants c2, c3 depending only on N and m (and not on r) such that the

following estimates hold:

If u 0 a x, 1 4 r 4 R and t e [OTr(u 0 ))

(1.7) f *U(tu )1 L

hn /(m-) A r (M-1)N+2
t

( If u 0 x, r ) 1, and t e (0,T r(u 0)

then Ou(tru0)1r 4 c3lu0l r

Dependence on Data: If u0, v 0 G X, r A 1, a e R, t e [O,min(Tr(u 0 ),Tr(v 0 ))), then

(1.9) IU(tu 0 ) U(tv 0 )l 1 t e lu0 - v 0

and
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(1.10) I 0JUttu0  0 r 4 ANo Or

where B depend only o max~l 1r'v I r' Qr), B 2  depends only on max(Su 0 IV 0 1v

and X is given in (1.7).

ordering Principle: If uO, Vo e x, then uO > v 0  implies U(t,u 0) U(tv 0 ) for

O 4 t < min(T~u 0), T(v0 )).

Remark 1. if uO e x, the assertions (i), (ii) of the theorem guarantee us a measurable

representative u(x,t), x e It e (O,T(uO)) of U(.u 0 ) which is locally bounded in

RN - (O,T(u 0 )). Thus ut and A(lul I u) are defined in V-011 x (O,T(u 0 )) and the

assertion (iii) is meaningful.

In fact, one can prove regularity for u - U(t,u0 ) which we have not listed in this

theorem. In the course of proving Proposition 1.6 below it is established that (Iulm-lu)

and V(Iuj M-1u) are locally square integrable on it x (O,T(u 0 )). Moreover, P. Sacks has

proved (personal commnunication) that u is continuous on RN - (O,T(u 0)).

Remark 2. The role played by L 1(P a) is auxiliary: the natural claim would be

"("u 0 ) e C([O,T(u 0 )) X)", but this is unfortunately false in general. one sees this

2 nI
from (i), since functions which are bounded by a multiple of (I + lxi 2)_- are not dense

in X (see the Appendix on X). However, for a > I + -1 one has X CLI (P ) .(see

Lemma 1.1 below) and (-,u 0) is continuous into L 1(PQ ). The estimate (1.9) plays a

significant role in the construction of U.

Remark 3. The estimates (1.7), (1.8) occur in the course of the proof and it is convenient

to record them here. Note that (1.7) implies that u(t) -U(t,u.) satisfies

X N 2 2 m-1

so t u(x,t)I 1 c 2 u U0N max(r , lxi

sup11 Iu(x,t)I c(r) *u I N for 0 < t < T (u
xep(+Ixl 2 )1/(m-!) t A 0 r r 0

which implies Mi since T(U.) - lim T rCu 0. The same estimate also gives
rt0

-6-



2Xc2
Iu(xt)l 2 Eu0 I for 1 4 r lxj, 0 < t < T (u

(I + lx 2)1
/ (m-1) - r

We will use this consequence below.

Remark 4. The assertion (1.10) shows the continuity into X of the solution of (IVP) with

respect to the initial data in X. It leads to the next result which exhibits a remarkable

correlation between the global solvability of (IVP), (which is roughly equivalent to

£(u0 ) - 0 - see Remark 5) and the assumption of the initial value in the topology of X.

Set

(1.13) x0 =u 0 e x, 1(u0 ) - 0 .

Corollary 1.1. Let u0 e X0 . Then U(t,u0 ) 
+ u0  in X as t + 0. Moreover

U(tu 0 ) e X0  for t > 0 and u(t) - U(t,u0 ) satisfies

(1.14) lim u(xft) -0
IxI*" ( +I+xl2)1/1m '1)

Remark 5. This corollary is proved later, but we mention here that continuity into X

for u0 e x0  is essentially a consequence of (1.10) coupled with the fact (proved in the

Appendix) that X0  is the closure of L I(a") in X and the known solvability of (IVP)

for u e C([0, ):L1(e)) when u0 e Ll(RN). The result (1.14) follows from (1.12).
Moreover, using the results of (2) one can prove that, in the nonnegative case, i(u0 ) = 0

0

is necessary for global time solvability of (IVP). Indeed, it is proved in [2] that if

m
u(x,t) is a continuous nonnegative solution of ut . Au on [0,1), then

(N+ 2 N
B u0(x)dx cR rn-1+ u(0,1) 2

0I

where c - c(N,m). If u(t) is defined on (0, ), then u8 (x,t) - u(Bx, 2t) is also a

solution for all 0 ) 1. Hence

(N+ -)

I" fe Uo(x)dx - f U Uo(Bx)dx 4 dR c -1 + u(0, 2 ) 2
ON ORB BR Ra

or, setting S - OR N

i m--)  (u0 (x)dx c c--I + N u(O2)1+(M-1)] I
(N B2 (N+4

-7-



We deduce that 2

lu0 1r  c -- + ca/r

u (i+(m- )N)

where c8 = u(0,2 < 1. Let r - with 8 fixed and then 8 
+  

to

conclude 1(u 0 ) = 0.
1 1 (p)1 +Nan

Remark 6. In the scale of spaces L (P we have L (P ) c X. when 1 < - + - and
n-i 2

therefore U(t,u0 ) is defined for all t > 0 if u0 e L (Pa) for such a. (See the

I N L
I

Appendix where other cases are also considered.) If YV - -+ 1 , then X (P ) but

* U(t,u0 ) will blow up in finite time for some u0 e L (P y). A related statement is that no
'V

ball {u 0 e L
1 (P ) Y : IU I 1 c) is mapped into a bounded set in L"(B ) by U(t,*)

L (P)

if t is large. This is cleir from the family of explicit solutions (see Barenblatt (31

or Pattle [10])

U (xt) 
= (c(nn2- 2n +}

n (l+t) (1+t)
2 X/N

cm = -- , x (n,O,...,O)
A (r-1)N+2 I 2mn

(We implicitly assume the uniqueness result of Section 2 here.) Then

2

3n u n(0) cn

2 2

so that

IUn(0)1 I~(y 4'c

fnO L I(P 4Y

while for (i+t)
2
X
iN 

> 8

_____ cm2 rn-iu (0,t) > A [ n(l+t)

Remark 7. Combining Theorem E with the uniqueness result of the next section, one can

extend U(t,u0 ) uniquely to a maximal interval of existence 0 ( t < T(u0 ) for each

U0 e X (see Theorem EU of Section 2). However, the dependence of (u ) on (uO0

-8-



cannot have a better form than (1.5). This is shown by the example in the introduction.

For a general nonnegative solution the computation in Remark 5 also shows that
Tlu0 • c (u0 M - 1 .

Proof of Theorem E.

Preliminaries: As a launching point we will use that if u0 e L1 (a) n LW (3), then (IVP)

has a unique solution u e C([0,"); L (R )) " L(N x [0,-)) which satisfies the equation

in the sense of distributions (see, e.g., (7], (6], (5]). Moreover, if

S : (0,=) x (LI (i) n L (3)) - L'( ) n LW(3

is given by S(t,u0 ) - u(t) where u(t) is the solution of (IVP) at time t, then for

U0 ,V 0 e LI(R") n L7(l) we have:

(1.15) S(*,u 0 ) e c([0,")i LI (R))

IS(tu 0 S(t'v0)I ( N u - v01 1 for t > 0(11)ILtu)"(U s ) L (a)

(1.17) u0  v0  implies S(t,u0 ) " S(t,v0 ) for t ) 0

(1.18) ass inf u0 < S(t,u0) 4 ass sup u0  for t ) 0

If u0 0, then for t > 0

(1.19) (s(tu 0)-) > - 1 in V'(RN)

where a - m-1 N
im (m-1)N+2

The relations (1.15) - (1.18) are classical while (1.19) is a result of Aronson and Benilan

[1].

We will also need the following technical result:

Lemma 1.2.
1 N 1lpa

(i) For a > - + -, we have X c L(P ) with continuous injection.
in-1 2 a

1 N 1 N(ii) If r > 0, (f I c L loc(R) and f n f in L oc(a ), then

IfI 4 lim inf If I
r nr

The lemma is proved in the Appendix.
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Reduction to S: Here we observe that Theorem E will be proved if we can produce constants

c1l, c2 , c 3 , B1 , B2 depending on the indicated quantities such that the assertions (1.7) -

(1.10) hold when U is replaced by S and u0 , v0  are chosen from L 
1
() 11 L (3 ).

Indeed, assume (1.7) - (1.10) hold for S. For u0 e X define the truncations UOn

by

(u On ) - T n u 0Cx)) if lxi 4 n,(1.22) Unl)"nllx) f x n

2 uOn(X) - 0 if lxi > n ,

where T n" R + R is given byn

[a if -n a s n
( n if n 4 sn

- if sa( -n

By (1.22) and Lemma 1.2 we have

U On e L(R N ) 
n L (R

N
) for n 1

(1.23) lUOnIr increases to u 01r  and

iu1 N

on - uIL + 0 as n + if a > - +On 0 1 P) -1a )

Now S(,u On) is continuous from [0O,) into L I(R N ) and hence into LI(P ) for

a > 0. By (1.9), (assumed for S) and (1.23), {S(t,u )) is a Cauchy sequence in
On

1lp ) 1 N
C([O,T (u )M L (p for all r ) 1 and a > - + 1 and thus converges to a limit

rO in-1 2

which we define to be U(t,u0 ). The function U(C,u 0 ) is then defined on [O,T(u 0 ))

(since Tr(u0 ) increases to T(u0 )) and clearly satisfies (ii), (i1), (1.7), (1.8),

(1.9) and the ordering principle. By Remark 3, (1.7) implies Ci). For (1.10), notice that

luOn - VOnIr 4 lu0 - v01 r  and use Lema 1.2. In this way we reduce the proof of Theorem

E to the verification of (1.7) - (1.10) for S.

Proof of Estimates (1.7) and (1.8) for S. It will prove convenient to deal with a

modification of IE r' Let * satisfy

r

-10-



J *(x) = K(xj) where 1 e CO (O,-)) is

(1.24) nonincreasing, K(s) - I for 0 4 a 4 1, K(s) - 0 for a > 2 and

-I

K(s) - e 2-s for 2 - C ( a - 2 and some c e (0,1)

The detailed structure of * is for later convenience. Now define

(1.25) Iflr  *( )lf for r > 0R)rR+

One easily sees that ' and 1.1 are equivalent norms on X with equivalencer r

constants independent of r ) 1.

The next result, which is related to our problem via (1.19), is the heart of our

proofs.

Proposition 1.3. Let u e L"(1?) be nonnegative, A e (0, ) and

(1.26) AuM- 1 
)-A in D,(a)

Then there is a constant X depending only on N and m > 1 such that for 1 4 r 4 R

2X(m-1)
(1.27) 1 ul 3-1 4 (u(-') . + ulm- I

R2 L (BR) 
r r

where 4 - N/((m-1)N + 2)

In order to keep the general structure of the proof of Theorem E in view we postpone

the proof of Proposition 1.3 until the end of this section. The next result yields the

estimates (1.7), (1.8) of Theorem E for S (recall the equivalence of j I and I Ir r

uniformly in r ) 1).

Le na 1.4. There are constants c4, c5 , c6 > 0 depending only on N and m > I such

IN i-i
that if U0 e L

1 (I?) n L (3 ), r ) 1 and 0 4 t 4 c4 /u ir  , then

i) ISlt,uo)l r 4 c SuoIr

and IS(tu
0 )1 

1  

2Xlm-1)

L )(B c
2 Xm-- ) luair for R ; r

-2 t



Proof: We begin here the first of several computations which will have a "formal"

appearance. That is, the computation is clearly valid only if the functions involved are

sufficiently regular. We will not give detailed proofs here that the outcomes of these

computations are valid for the less regular functions we deal with, as this may be done in

a routine way during the construction of S by the reader's favorite method. In

particular, one may use the representation of S by the generation theory of nonlinear

semigroups and the results of [5] to do this (see, e.g. 16] for an example).

It will suffice to prove (i) and (ii) for u0 ) 0 since the order preserving property

of S and S(t,-uO) - -S(t,uO ) imply

(S(t,u )
+  st,uS

(s(tu 0)) -s(t,- S(t~u 0

+ +~ tu)I =s(t,u+)+ tu-.Tsweak

where re  max(r,0), r" - (-r) . Thus IS(t,u0)I ' S(t,u) + S(tu0). Thus we take

u0 > 0 below.

Formally u - S(t,u0) eatisfies

afj u(X,t)#* ) f ut#(!) - f (Au R

2t R

We integrate this in time to conclude
x

f U(X,t)fl ) - f u+(f)#(E(A+)ft)R

4 f uoX),N + c ft R72 ,ul'm. fB u
0 L (B 2R

2R

4 f u (x)*() + C f, R-2 lu 1m- 1 f U#A-o R 0 uv 2 RL (B2R)

where c denotes a constant varying from line to line. Multiply this inequality by

-2L_ +N)
1 and take the supremum over R ) r of both sides to conclude that g(t)

lu(t)lr satisfies

-12-



1u1'

C(1.28) g(t) ( ) + cf,(uR 9Td

Using Proposition 1.3 in conjunction with (1.19) yields

LR ( kR) A(r-i) Iu(t)I r + iu(t)Iu- 1)

and using this in (1.28) we have

(1.29) g(t) IC gCO) + c ft N- +- g(r) W.gt)d

A continuous solution of (1.29) lies belcw the solution h of

+2A(u 1))

(13)hl(t) - c((1) hit) N + h(t)m )

h(0) - g(0)

where this time c has the same meaning as in (1.29). To analyze (1.30) we consider the

equation subject to

1 I + 21(m-1)

or

0 4 /htm

which will be valid for t in some interval (0,b). on this interval h is bounded above

by the solution H of

2c 1 + 2X(m-1)

HIMt A( 1~-) 11(t) H 1(0) - g(0)

which is explicitly given by

-2X(m-1) 2A~ N
N N -2X~m-1)(1.32) 11(t) [ g(0) - 2c(m-1)t

We conclude that

-13-



so long as

(1.34) 0 T ( 1/H( T)1 for 0 4 T 4 t

By (1.32). (1.34) reduces to

2).(u-1) 2x. N

0 4 T 4 (g(0) - 2c(m.1)TN I2I

or 2. ).

0 4 (142c(m-1))T 
N  4 g(O)

or

(1.35) 0 T 4 c4/g(0)

Moreover, mince H is increasing

(1.36) H(T) 4 H(c 4/g(0)u-
l
) - c5 g(0) for 0 4 T 4 c4/g(0)-

1

for sose constant cS.

The validity of (1.33) and (1.36) on (1.35) yields (M). To obtain (ii), we use again

Proposition 1.3 together with (1.19), (1.33), (1.36) to qet

~2A(n_1 l

I l u l s 1 I c [ [tI u Ir  N + ju o I -1 I

R 2  L (B R CE).(-1) 0ua r 0 uOr

for 0 4 t 4 c /Iu I -  
, R ) r > I

But when tlu 0Ir
l 
• 04, we also have

2N(-1) 2 )(-) 2N (m-1) 24N(1 -).

r luor luolr 0 r  )

whence the estimate (ii) with a suitable c6 (since 1 - 2-- -

Proof of Estimate. (1.9). (1.10) for S.

To obtain (1.10) we formally proceed as follows: Let u = S(t,u0 ), v - S(t,v0 ). Let

p R It be a smooth increasing function with p(O) - 0 and J(r) - fO p(e)ds. Then,

f ~Vm))P(u, - V
f *(R)(A(u "  )P u "  )

- - *C()p'(U"- v )IV(u" - vAl 2 
- f (v#(I))p(u" - v)V(u -

4 -f V,#()Vj(" - v') - f (A#))j(u" - vs)

-14-



Now, let p(r) tend to the signum function so that J(uO - vm ) tends to ium - vmI. We

conclude that

f *#()sign(um - vm)&(u - v')- f *C-!)ign(u-v)A(u a- nm)

, f Ah ()Iu" - V't I

Using that u,v are solutions of ut . Au , we are led to

d f *s)Iu-vI " I ()iugn-uV)(u& -

d f ,A ,m ,- VI ' f - I#ICA)max(mIuI- '., , mlvi ) lu-vI

R2

c max(R
2
1uI

1  
, R-2lvlm.

1  ) f2Ru-vl
L (B2R) L (B2 R)

c max(i-2 ,ui. '  
. j- I''-J ) f Iu-vIL (B2R) L (a2R

-2 +-C-1 +W)

Multiplication by R 31 , use of Lemma 1.4 (II) and integration in time lead to the

conclusion

-(m-1) Iumr) - v(T) I

lu(t) - v(t)Ir -uC - VoI + c(max(luoIr , IV0Ir)) T .r(m-1) dT

1-m 1-m)
for 0 4 t 4 c4 mindu l Vr  I 0 ) . The result follows by comparison of

t* Ju(t) - v(t)Ir with the solution of

h'(t) -k ht)t
-

h(0) - lu0 - VoI r

where 8 - A(m-1) < I and k - c(max(lu 0Ir, IV01r))W , namely

k 1-8

h(t) - lu0 - VoI r

We prove (1.8) in a similar way, using

d f P lu-v I 4 f (AP )Iu' - v'I
dt aa

which is obtained as above, while

-A( + lxi 2 a+2 (N + (N-20-2)x 2)

(1 + Ixi

so that

-15-



1+I a a1 + 1Il

and

d I 5%lu-vl C m f max(ll m-l . IviM-1 lu-vl0a1 + Ixi
2

But, for r 4 R ' lxi • 2R

lu(t)l 
1

[u(xt)lM-1 (2R)2 L (B 2R)

I + lxl2  I+R 2 (2R)2

and for lx1 4 r I

Iu(x,t)l ='  2  L (Br

1 + Ixl
2  r

2

so that lu(t)lm-

sp u(xt~M-I c sup L (B R

,e 1 + lxi RJr R

Then we can proceed as above.

The proof of Theorem E is now completed by proving Proposition 1.3.

Proof of Proposition 1.3. We will give here our original proof of this result using

Moser's well-known ideas. It is convenient for our purposes and entirely self-contained.

See, however, the remarks at the end of the proof.

Let u satisfy the assumptions of the proposition. Let us also assume that u is

smooth and strictly positive (so that, in particular, uu-
1 

is smooth).

We will indicate later how to get rid of this extra assumption.

Let # e c0'(3M) ) 0. Then

A(*U) , I '1 Um-1 + 2 Vet4 1 Vu -
1 + uM-l 60

- 1

and by (1.26)

(1.37) A(*u) ) -A*' + 2 V-lui - 1 
+ u

We will only use f(x) - *(x/R) for R > 0 with * as in (1.24). in this case

e e Co(3) for every e > O, so the regularity of *m is not in question. Moreover,

one easily checks that

lim *(x) p-2 1A#(x)l + #(x) p 3 V#(x)l 2 
- 0

Ixi+2
for all p > 1 and hence

-16-



(1.38) *, 2 1A)1 p

Now, multiply (1.37) by (*u)P  where p 0 1 and integrate to find{ J (iji)PY(*iu)a -9 A f *'1+p u
(1.39)

-2 f ()Pva-lvu - I 
- f ('u) u 1 A " 1

We rewrite the various ter=. One has

p4.a-1 2
2€1 .40f S V(*,) V (*u- l ' 1 - I p f v 2

(m-~l+p) 2

(1.41) 2 (')V' 1Vu 1 - 1)2 "

(m- l+p

2 f ua-1+p 6*M-I+p

2

(m-1+p)2

S. (a-1) 2 , uM'l(u,)P((m-2 +p) ,e 3 ,V,1 2 + im-2&#,

Now we put *Cx) - *(x/R) in (1.39), (1.40), (1.41), we use (1.38) and the fact that

Om " 1  ie bounded to obtain

p+=- 1 2

(1.42) f l V*(!#)u) 2 cA f (#(E)u)p + f (*(j)u)pu--1 1
R Ru R

where c is a constant independent of p and R.

Fix r 4 1 and let

(1.43) A - sup
*r R

2

Then, (1.42), (1.43) yield, with a new constant,

pI -2
(1.44) RI(#() ( cp(A+A) f (*-)u) for R ) r

Due to the use of Sobolev's inequalities, our proof will now depend on the dimension

N. Let us assume first that N ) 3. Then

-17-



p+=-1 2 2

(1.45) f 17,(#3)u) 2 1 crj R cpl)2

where 2* - 2N/(N-2). Combining (1.45) with (1.44) leads to

(1.46) (fI*(M) ]S1p~b] 1/, cp(A+A) f (*(3)ul p
R R

where

(1.47) a - 2*/2 - N/(N-2) , b - s(m-1) = (a-1)N/(M-2)

Multiplying (1.46) by R
"¥ (  1 )  

(where Y > 0 will be discussed shortly), and taking

*th powers one finds

(1.48) 1 'b 'p(A+A)' 1 f ().p

Define

po . 1, pk+l = aLk P b for k . 0,1,...,

(1.49) 60 -- +I , 8 _ 1 k _ Ok  6 for k 0,1,...,0 r -I k- q. +01 k Pk+1

1 x ulk

kP - , f ('f)n) for k - ,......

Now put p - Pk' ¥ = + in (1.48) and take the supremum over R ) r in the result to

obtain

(1.0) %+1 C cspk(A+A)*ak

iterating (1.49) yields
2 k+1 2 k+1 k+1

a (cc(A+A)]++ ''  p:p*l.. (a.)*

or 1/p G

(1.51) (ak) k;k+1 (c(A+A)]
k 

Mk (aO
) k

where
a +2+... +

k+ i
k Pk+l

2 k+ 1/p

(1.52) k4I -C " ) 1

-18-
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and by (1.47), (1.49)

(1.53) Px+1 " aPk + b - a + (M-i) (a + sk +..'+s)

From (1.52), (1.53), (1.49) one easily deduces

lim a -I--
k CD MA1 N(m-1)+2

lim ms-1 2 2X

k4a k &- (m-1)+2 N

(1.54)

lin $up 14 < ,
k+"

k
lir 0k "lim i ( 2

7- + 2

Using this information in (1.51) and recalling (1.49), we conclude that, with a new c,

I- xLCD)
2'1(1)u' C q;c(A+A) 'luJ:r/

for R ) r. Remembering (1.43) this gives

I

(1.55) A ' clA+A) lUir

Finally, we analyze this implicit inequality.

Lewua 1.3. Let 0 ( B < a and A, A, L > 0 satisfy

(1.56) AU (L(A + A)

Then there is a constant K depending only on a, P such that

(1.57) h 4 K(AB/U L
1/ a 

+ L1/(aB)

Proof. Assume A ) A. Then

A' L(A + A) f 2 L A

and

A (2 L)

If A c A, then A* 4 2 L A and

A 4 2 B/a LI/U AB/Q

whence the result.
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Using the lema, (1.55) implies, with a new C,

2)(m-1)

c[A A (M - 1 ) lul r  N + lUlr -I

and we have (1.27) when N ) 3.

For N - 2, we start from (1.44) and proceed as follows, By the inequality

IviL 1" ( clvl 1 1" - N - 2 for N - 2
L (3") Ll(3) -

applied to v
5
, a ) 1 and HSider's inequality we have

IV ' 1 ( c f mVvs) - ce f Iva vvl ' cs(f v
2 ("1))1/2(f ;VvI2 )

1/ 2

or

I i~vl
2  . 2s

f*
2 

f v2(s-1)

P+m- 1
Apply this with v - (#())u) 2 in (1.44) to obtain

R

r (*(x)u]s(p+-) C c.2p(A + A)EI (*(-)u)Ptlf (,(E)u)(.-')(P 1)]

Choose s - 1 + -- so that a(p+m-1) -
2
p+m-1 and the above inequality becomesp4.3-1 '

f (w(l).)
2 p.-

1 • c. 2 p(A + A) (f (#(E)u)p]
2

or, with a new constant,

(1.58) (f ma (p~-)/ cplVA-+A fJ (~~

This is treated analogously to (1.46). If we set

Po . 1, Pk+l ' 2pk + M -I Vk )o 0

(1.59) 80 .-- + 2, k - 2 P k

ItPk+ k

M- +1 )uPk k

a --up f (#(A))P

then, by (1.58),

4 c
2pk(A + A)a

-20-



This relation is similar to (1.50) where a is replaced by 2 and we obtain in the same

way 1 0

(1.60) ak+l
p k+

I . c(, -A) k(a

where (see (1.52) - (1.54))

Pk+l " 
2 k 1 + (m-1)(2k + 

2 k -  +...+ 1)

2+2 2 +...+2 
k+  

2l's Ctk - lira

k
"  

k*" Pk+1

limB 1lim 2 k+/p I

___ k k.w k+1

iO 11 2 k 8op 1 (.21 + 2list - lin/ 2 GO +2

k k+-

After letting k tend to - in (1.60), we have

I I

A- ' (A + A)l/s I. r

which is exactly (1.55) with N - 2 (recall that then A 2 The proof is
(a-1)2+2 M

completed as in the case N ; 3.

For N - 1, we use only one step starting from the embedding

lVI-- ( cmv 1 ()

For all s? 1, we have

,v
s
, c c f JVv•J i c• (f v

2
('-1))

1
/
2
(f IVvI

2
)
1/

;

L (2)1
x 2n)

We use this in (1.44) with v - C(()U 2 and p - 1 to obtain
R,(!), . c 2 + A) U (1)W(

R ([(() R R

Now choose a - I + -1 and this becomesm , 1,, xi
(1.61) #(E)U) 1 4 c(A+ A) (f *(I)u)

R L (At)R

-2( 2 + 1)

We multiply this inequality by R , take the supremum over R r and obtain
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M+1

LS c(A + A) lul

o2r

or

1 1 2
mn-I W+I m+1

A , c(A + A) lul rr

which is exactly (1.55) when N - 1 (then A - -) 1
To complete the proof of Proposition 1.1, we now indicate how to drop the assumption

that u is smooth and positive. If u satisfies the assumption of Proposition 1.1, we

introduce v > 0 defined by vTI - PC* + c where Pc is a standard mollifier

and * denotes the convolution in K". Then v is bounded, smooth, positive and

AV M- 1  p,* AuM- l )-A

Hence above computations are valid with v£ in place of u. Since vC converges a.e.

to u when 6 tends to 0 and is uniformly locally bounded, passing to the limit in

(1.46) - written with vc in place of u - yields (1.46) for u itself (one easily checks

that A(v,) converges to A(u) when u e L (3 )). The computations coming after (1.46)

do not require any smoothness of u so that one can complete the proof exactly as

above for N ) 3. If N - 2,1, we may pass to the limit in (I.58) and (1.61) as a + 0,

etc.

Remarks on Proposition 1.3. H. Brezis and others suggested that this result might

correspond to a simple interior estimate. In fact, this is the case. For example, if

Lu - -(aij(x)ux)X. is a divergence form uniformly elliptic operator with coefficients in

L7(B2R ) and u o 0 satisfies Lu 4 f in B2R where f e LP(B2R) with p > W/2, then

lul . C(Ifl* lul 1 -  + R lulL(B R) Af (2) PO P
R 2R L (B2R) L (B2R

where C depends suitably on the coefficients of L, p and p0 > 0 and a =

Np/(p0 (2p-N) + Np).
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Proposition 1.3 follows easily. The proof of this result can be given using standard

results and methods of Moser, etc. This will be done in generality (i.e., in the parabolic

case with lower order terms, etc.) elsewhere.

Proof of Corollary 1.1

Let u0 e XOand define 
110n as in (1.22). Then, for all r > 0,

(1.62) lim lu On-u.l -O0

Indeed, if Y -2+ N4, then for all r 4 R and r 4 r0  we haveM-1

R 11 U - On' Ru IIr 0  - u nI+ 2 ( I(1RI'O"

Taking the supremum over R r with r, ro fixed yields

luOn uOr r* "LojjC }l On O 1u r0

so that (see (1.22))

lim sup tun - uO r ( 21u Ir

Since ham lul 0 0, we obtain (1.62).

Now, S(,u On e C[O,-)l L 1 (3?)) C- C((O,-), X). By (1.62) and the estimate (1.10)

of Theorem E, S(,u on ) is a Cauchy sequence in CU[OTr(uo))i X) for all r > 0. Since

ham T r (u 0 4+, U(-,u 0 ), obtained as the limit of S(-,u On), is defined on [O, ) and

belongs to C((O, ), X).

Since X0is closed in X (see Appendix), u(t) e 1% for all t > 0. The more

precise estimate (1.14) comes from (1.6), (1.12).

Theorem E asserts the existence of a solution u(t) of (IVP) for u.e x and claims

u(t) Nat the same time that (IIl2 1/(m-1) e L (3 ) for t e (O.T(u0 )). The next result shows

that this L -estimate can be improved when u0 is further restricted. The proof

requires only small changes in the arguments above.

For vi e (0,1], we set

-23-



(1=) l sup 2 Ifi
ru Rr U(-j +N)

R

so that 1- 1.1 r.1. set

x= (f e L' (Rh); Ifl < - for some r > 01
1oc r,M

Obviously X C X for all P e (0,11.

Proosition 1.5. Let M e (0,1) and u0  X X Then

(1.65) u(t,u0)p /(M-l ) e L"( ) for 0 < t < +

Moreover, If

(1.66) T (U 0)  1 o-r,1

then

for R ) r ) I and 0 < t < T r,(u )

I u(t,u0) I
(1.67) L (B ) c2 2 IN

R
2
U/(m-1) 0 0 r,j (m-l)N+2

and the estimates (1.8), (1.10) in Theorem R are valid with 11 r,) in place of 1-1r '

T r, in place of Tr and the constants ci, c 2 , c3 can be chosen independent of

Y 0 (0,11.

Proof. We merely comment on the changes in the proof of Theorem E necessary to pre'e

Proposition 1.5. Proposition 1.3 remains correct if (1.27) is replaced by

2A(M-1)

(1.27)'ll-
1  

4. K(A - utlr + Jlul1

R L (B R ) rM r,1j

and 11 rou is defined in the obvious way (see (1.25)). Indeed, put

lulm-1

(1.43)' At, SUP

R)r A
2W

and use
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ful M-
1

12 (f( )u)P U-' 2"j L (B 2R) f (i- i)
R
2  (2R)

2
w R

2 1
-p)

1

c A~ f I )

for R r * 1 to conclude

(1.46)' (f (#(.)u)ap+b) /4 c p (A2+ A ) (( )u) P

R R

Then put 2a- + N) in (1.49), so e * U -. The result will be (1.55) with A,

luir replaced by A, jul r,U.

Next, we go back to (1.28) which is valid with g(t) - fu(t)l and c independentr,ij

of p e (0,1]. Combining with (1.6), we first obtain that

c(cU0 rlt
2 A

/N

(1.68) g(t) 4 g(0) e

which proves that Ju(t)j remains uniformly bounded on [0,Tr(u0)). Then, replace A

by A 'I by I in all the computations (1.28) - (1.36) and use (1.27)' instead
P r rIi

of (1.27) to obtain (1.67). The modified (1.8), (1.10) are obtained in a similar way.

In general, T r,(u 0 ) < T ru 0 ) for M e (0,1) so that (1.67) does not directly prove

that U2 remains bounded for t e (0,Tr(u0 )). But for this one can use
(l+[xl 2l)

(1.68) and (1.27)'.

To complete the proof, observe that

X1 c X0  for U e (0,1)

whence lim T C 0

Remark 8. In Proposition 1.5 we have excluded the case 0 - 0. Note that the definition

(1.63) with P - 0 would lead to

Ifl r, = IflLI(,N) Vr > 0

and the conclusions of the proposition are in fact true with 0 - 0 (it is well-known that

u0 e L IR) --> u(t) e L7(1e), see 151, (13]). But this is not the natural limiting case,

which is in fact the result stated next. It provides a sufficient condition on u0  (much
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more general than u 0 e LI(NP)) guaranteeing U(t,u0 ) e LC(RN) for all t > 0. Moreover

this condition on u0  is necessary by the results of [21.

Proposition 1.3. Let u e Llo(e) satisfy

(1.69) Sup B(X,1) u 0I t lu010 < +

zeW

where B(z,1) - {x e N; Ix-zl 4 1. Then

(1.70) Ut ) E lu I2AIN + C'lu010for t > 0
0 1.0R)) t x 0 0  0 0

where c, c' depend only on N and m.

Proof. Again the proof is obtained by slightly modifying the proof of Theorem a. First,

Proposition (1.1) remains true if (1.27) is replaced by

2)X(m-1)

(1.27)" 1lu0 
1  • (AA(M-I)ul 0  + lul 01

L (RN)

Indeed put *(x) 0 * ) - #(x-z) in (1.39), (1.40), (1.41) to replace (1.42) by

(1.42). f Iv. (x) 2 1 < c pEA f ((x))P + f (sx( )-)P"

and (1.44) by

(1.44)" I zv, W 2 cp(A + A) f z (xU))P

where

A 0 . lul
m-.

l

A liL CRM)

For N > 3 we use Sobolev's inequality to obtain

(1.48)" f (#z(x)U)sP+b c p 
(A + A0 )fr (0(X)u)p]l

with a, b defined as in (1.47). Then set

Po - I Pk+1 
= Pks 

+ b

a ksup (0 z (x)u)pk

zei"

and finish as in the proof of Theorem E to obtain (1.27)" by noticing that
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IuI - sup lul ( c lim sup (ak)k
L() zeaN L (Bez,2)) k+=

Next we go back to (1.28) and modify the arguments to obtain
g(t) 4 g(0) + ft lul -

0 L C (RN)gT

with g(t) - Iu(t)10 . Obviously adaptations of the rest of the proof of Theorem 5 lead to

(1.70) with c' - 0 but for t e (o,c /IU0 10  ). To complete the proof, one uses that

t + IU(teu 0)l is nonincreasing, so that
L (NN

0, IU(tuo)1 4* N c + luol , to . / -I
L7Cj) t to0

which yields (1.70) with a' - c/c.
1

Our last existence result concerns (IVP) when the initial datum is a Radon measure U

on RU satisfying

(1.71) supI - IU - for r > 1
RUr 2-- +W h r

R!-I

where Ji is the variation of P. we set

I(U) - lim *PI
rtm

Proposition 1.6. Let M be a Radon measure on R" satisfying (1.71) and c,, c2, c3  the

constants of Theorem 1.1. Then there is a function u(x,t) defined for

0 < t < T(U) - c /I/(p) 1 such that

Iu(. t)l
L (BR  c2  2A/M

(a) 2/(m-1) - A r
R t

for R > r > 1, 0 < t < T (P) - c /10l;-1

(c) Iu(.,t)I 4 c 31I1 for 0 4 t < T (C)
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(d) For * e C CR x [0,T(I)))

fT(U) N (u~t + lulm- u A) f £ ,(x,O)du(x)

Proof. First observe tht (a), (b), (c) imply that u(x,t) is a measurable, locally bounded

N x 0TU) sc ht o Nfunction on R x ((,TM) such that, for e e C0(A ) with 6 (x) - 0 on IxI 0 R ;0 r)

and 6•0

2X(m-1)
t f uls c 3 c'R 2tuI A Cu(x,-,)

f t r f x,)
2 r 0 Rm-1)

(1.72)

< 11 cCR) I106 t- 2 1/N 6 . 2X(m-1)+ Sr ' N

Hence (d) makes sense.

Now let M - P *M where 0n is a sequence of mollifiers on 1N. Then P e X andn nn n

lP n I converges to tplr for all r > 0. Theorem E provides existence of unix,t)

U(t, n) satisfying (a), (b), (c), (d) with Un , un  in place of M and u. In

particular, un is locally bounded, uniformly in n on V x (0,T(n )). Then, if one can

prove that a subsequence of un  converges a.e. (x,t), the limit u will satisfy the

conclusions of Proposition 1.4 (d) is obtained with the help of (1.72) which controls the

behavior near t 0). This a.e. convergence is a consequence of the compactness of um
n

in L C((0,T(Cn)) x RN ) as shown by the following remarks.in c

Let R ) I and fCx) - 0C) where # is chosen as in (1.24). Then multiplyingR
(formally) (IVP) by * lulm 1u (written 4 u for simplicity) gives

f *u'ut -I *u u A = -f u V Vu -f IVu'U12

. I f u
2mA* f ,iVu"'122

We deduce for 0 < e < t < TCPn

2 2m 1
(1.73) f {t f xl< t um 1 jt i 2m + 'f{ixt42Rum ' (s)

2 ft 41.1 29- m+1
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which proves that Vu
m  

is uniformly bounded in L 
2  

(1? x (0,T(IAn))) Then we multiply
n loc

(IVP) by *(um )t and obtain

f *(u )tut  - (u)t Vu'V* - f * Vu"V(u')t

This implies

S l2l / 2(f ) 1/ 2

(1.74) f #1u) + . f *1Vum 2 '1 1{x IU

where

(1.75) - (R) <

* 1/2 L(R N )

by (1.38) applied with p - 2. Now we remark that

(1.76) f *[(u)t 2 
< 3luM (t)l - f l(u )tutL(2R

)

We use (1.74), (1.76), (1.73) to obtain

(1.77) a(t)
2 

+ a(t) L f #IVuml2 4 c(R)O(t)a(t) IVum(t)12)1/2

at 2122Rr

where we set a(t) - Cf *[(u) ) 1 1/2, O(t) - um-(t)l . But

2L (B2Rx
2 
+ y 4 ax-- y 41-.

Thus, (1.77) implies

I f Vu 12 . c2(R) 2(t) fB Ivm (t)12
Tt 4 B2R

Coupled with (1.73), this proves that VU 
m  

is uniformly bounded in L
0 

((O,T(jn))

L2(BR)) for all R > 0. We use this in (1.77) to obtain

ft a2()do 4 c(R,t,s) < +- for 0 < s < t < T(n
)

a Lm2 -N

Finally, we have proved that u , Vu I Cu) are bounded in L 2 (1? (0,T( )
n n n t l n

uniformly in n. This yields the compactness needed for un and completes the proof of

Proposition 1.4 - provided the above computations are justified. We leave this last task

to the reader.
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Section 2: Uniqueness

We shall use the notation of Section 1.

Theorem U. Let T > 0 and u : I? [ 0,T] I t satisfying

Mi u e CQ0.T], L (R")) n L7(0,TX),

(II t- All-Iu in DICR (0,T))

Then

u~t) - U(t,u(0)) for 0 4 t 4 .in(T,T(u(O)))

We begin by proving a weaker uniqueness result, namely:

Proposition 2.1. Let T > 0 and ui, v satisfy

Mi U, Vye C(,T~i L 1 (ftN)),

Cii),//u-i' V e L (2 N x O,T)

Ciii - Ajuja- Iu v - AIVlaM-1 v in I( 3 N - C(0,T))

(iv) (u-v)CO) - a

Then u -v.

Remark 1. Proposition 2.1 has been proved in the case N - I by Kalashnikov in (81 with

the extra assumption that u, v are continuous. We use similar methods here. All the

other uniqueness results that have been obtained for CIVP) deal with initial data which do

not grow when lxi + (see [8), 1101, [111, (121, (14]). Theorem U recovsrs all of

them but those dealing with initial data which are measures (see (101, [12]).

Proof of Proposition 2.1.. it suffices to prove U(T) - V(T. For Simplicity we will

write us in place of Iulmilu. As a consequence of (iii), Civ), for all

*6 C(ak4? - 10,T) ) we have

fT f Cu-v)* ( u - v')&* - f Cu-v)CT)*CT)

If we set

a(x,t) - u a x~t)-v m x~t) if u(x,t) of v(x,t)u(x,t)-v~x,t)

- IMu- (x,t) If ulx,t) -v(x,t)

the above equality become
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(2.1) f" f (u-v)(# t  aA*) - f (u-v)CT)*(T)

Now let > 0 be fixed and

[a ne e(I -R 10[,TF), a n >0, n -12..

2 .2 ya), 4 0 ( 1, Ox) - 0 for Ixi ) R0 1

Let R > R0 + 1 and *n be a solution of

*nt 
+ anA*n - 0 in 0 < t < T, Ixi < R

(2.3) 
nI IxI-R 0

*n (X,T) - O(x)

Finally, let 0 < C < and

F, e C (N), 0 f t 1

(2.4) *4 . I on {Ixl < R-2C), *€ " 0 on (lxi > a-C)

L 2

NoV put * - $e~n in (2.1) to get (recall a(u-v) -u
m - va)

fT f (u/v)# (a-'an)* + fo f (Um ')(2V *# *n#*C)

(2.5) 
- f (u-v)(T)S

We denote the first and second integrals above by InE , Jn respectively. Next estimate

JnC using (2.4):

4 T IV* 14F 1u m I( CJn +1n

n 0 J f{R-2C<IxI<R lu + C

Since *n 0 0 on (Ixj - R)

sup I* n (xt)I 1 C sup IV* n(Xt)I

R-2CI<IR R-2C<lxI<R
O<t<T O<t<T
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and

*3n ,

lim ( sup IV*nlX~t)I) sup nV*n(X~t)l = sup I3v-
£+0 R-29<Ix[<R Ix-R IlxIR

0<t<T 0<t<T O-Ct<T

an
where - denotes the normal derivative of *n  on the sphere {Ixl = R). Hence

.an

in  . ii u n c *R N 1 ( up - (x,t)ll ia sup -v x

40 lxl=R £+0 R-2<lxl<R
Oet<T O<t<T

and, using (ii),

14-l+ 2u
"- I+On

(2.6) R -1 ( Cup R47 (x't)I)

O<t<T

For I.. we have

2 (a-a n)2 1/2 2 1/2

(2.7) t C 0 
1n (f X1R)u-v -7- ) (41 1 nhn

n

Let us now estimate sup IjV- (x,t)l. Assume we have chosen an such that
lxi-R
O<t<T

(2.8) an(X,t) 4 K(1 + xI 2 ) for 0 < t < T, x e I?

For reasons which will become apparent, let a, B be such that

(2.9) B> N- +"
2 Mn-1

and
(2.10) a > 4NlqB(0+1)

Set:
eO (T-t)

(x,t) -

(1+Ixl2)a

Then

-32-



I 1 W + 1
2 
)Q(Tt) -20N 4B(B+1)lxl

2

an $ K i )(1+lx2) +* (I 1xl 2 .21

f 4NKB(0+l)* 
•

Since *t = "04' by (2.10) and above inequality
*t +

Thus, if we now choose A so that
A

(2.11) *n (x,T) - O(x) < 2 a * $(T), jxj 4 R
(1+lxl)

by the maximum principle we will have

(2.12) X* ) *n for 0 < t < T, 1xI 4 R

which provides a first estimate for *n' Note that (2.11) is satisfied if

A - 10I"(1 + t2)

Let us now construct a function g on the set {(x,t)r R-1 C lxi 4 R, 0 < t < T}

such that

(2.13) g ; *n and g(x,t) - 0 for lxi - R, 0 ( t < T

By (2.3), (2.13) we will then have

r- (g - *n)(x,t) 4 0 for lxi - R, 0 < t < T

and hence (recall that - 0)

(2.14) sup I -(xt)l 1 sup (xt)
Ixl-R TxI-R
O<t<T O<t<T

If N 0 3, let g, which is independent of t, be defined by
d

g(x,t) - d + e - g(x)
ixI2

where e, d satisfy

dR 1 N 2 + • X e 19 2 1 0
(1+(R-1

(2.15)
dN. + e- 0•

-33-
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Note that Ag - 0 on (R-cIxICRJ. Moreover, by (2.12), (2.15), (2.3)

g(x) " #n(x,t) for IxI - R-1, 0 < t < T

g(x) ( Vn(x,T) - 0 for R-1 < IxI < R

0 - g(x) - *n(x,t) for IxI - R, 0 < t < T

Therefore (2.13) holds by maximum principle and so does (2.14). It remains to estimate

(2-N)d - 2-N X)e ( 1 1  I 1

3V (X) -1 R 11+(R1)2)0 CR-1) R 2"R •

Hence

(2.16) Cx) c for lxI - R3V R 20

where c does not depend on R ) 2. The same computations with g(x) - dinIxi + e if

H - 2 and g(x) - dlxi + e if N - 1 lead to the same estimate (2.16). Combining with

(2.14), we have

(2.17) sup I- (xt)I 2
Ix-R1 R20

0(t(T

Going back to (2.6), we obtain

N-1+ L -20
2.18) J CR r-

n

where c depends only on a, N, , 0 and K defined in (2.8).

To estimate Tn, multiply the equation in (2.3) by A* n  and integrate to obtainn
in(0)12 + f ,[,[. v [

fIV#I 0)I f .a# 12 _ I f 1ve12

Thus (see 2.7)

(a-a )2 1/2

(2.19) 'n • c(R) a1" an
n

I N

Let us choose a -aP + - where a is the extension by 0 of a to t Nt and
n n n

n a sequence of mollifiers in R x I? such that

0 S IxIR}la-a*0n) C -•

n
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It

Then, an  satisfies (2.2), a ? - and an  satisfies (2.8) with
n n*

K = + a max(, u M- OR ivxl -UL.(3 x(0,T)) L (3 x(O,T))

which is finite by assumption. Moreover

(2.20) L ( (a-a ) 2 1/2 1 (TRN) 1/2 c(f)
0 4 11R ; ~ n n

n

Now, for R fixed, R > R + 1, we let n tend to * in (2.6) and (2.7). Using

(2.5), (2.18), (2.19), (2.20), we obtain

0 2mif (u-v)(T)eI 4 c R a -N-1+ - 20

Letting R tend to w and using (2.9) finally yield

If (u-v)(T)OI , 0

Since 0 is arbitrary we deduce u - v.

Proof of Theorem U

Let u satisfy the assumption. of Theorem U. By Theorem Z and Proposition 2.1, for

all C o 0 small enough

(2.21) u(t+C) - U(tu(C))

for all 0 ( t < mtin(T-C,T(u(C))). Thanks to the continuity property stated in Theorem E,

(1.9), Theorem U will be proved by letting C go to 0 in (2.21), provided one can show

that u(C) converges to u(O) in LI (P ) for some a > 0 (note that

T (u(0)) O lim sup T (u(C))). But, by (2.21) and Theorem Er €0 r

n-i c
(2.22) 1 uc--.C)), x e Re, 0 < t < min(T-E,T (u(C)))

1+IxI 2 tXm1I

where cC depends on lu(C)i X. Since u e L (0,T:X), one can pass to the limit in (2.22)

and obtain

a-i

(2.23) 1 , (xt?1  c
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where c does not depend on C. On the other hand, as noticed in the proof of the

estimates (1.8), (1.9), for all e C0 (RN), 0, one has

__f *1U(t,u(C))iJ 4 f AVIU(t,u(C))Im  on (0,T(u(c)))dt

for all E > 0 small. By (2.21) this gives

d I *1ut) ' f A*Vul for t e (0,O), a > 0 and small

Thanks to (2.23), we may integrate this up to 0 and get

(2.24) f *Iu(t)I f *Iu(0)l + c ft f++-2)

Now we choose a > I + N + Mo By Lemma 1
MI2

(2.25) I(1+lxl 2)NMIL 0(O,T; L1 (P)) L (0,T;X)

We put VP - p O(l xi) in (2.24) where e e C (R), 8(r) - 1 for r e [0,13 and we let n

tend to o Thanks to (2.25) we obtain, in the limit,
(2.26) 1 PlIu(t)I 4 f P lU()I + cc ft dT I P lumt

f P 
0 T Cm-i)

where we used lAP J(l+Jx 2) • CUP .  From (2.26), (2.25) we deduce

lim sup f aluC)l % f " paIu(O)I

Combine this with Fatou's lemma and one obtains that f P au(C)I converges to

f P lu(O)1. Since u(c) converges to u(O) in LIo(R N), by Lebesue's theorem, u(C)

converges to u(O) in L1 (0). This completes the proof of Theorem U.

Combining Theorem 8 and Theorem U, we can state

Theorem EU. Let u0 e X. Then, there exists T e (0, ] and a unique maximally defined

solution u of

Ml u e c([O,T), L loc (RN)) n Lloc((O,T), X),

(ii) UP e 17 N (0,T))

(iii) ut - Aul u in V'(R (0,T))

(iv) u(0) U0

Moreover, if T < ,

(a) lim lu(t)I - , Vr > 0

ttT-36-



(b) li IUm- 1 (t)Pl - a

t+T 0(R(c) urn f ,mi l(t)p, - -

Proof. Clearly, there exists a maximally defined u on some [0,T) with properties (i),

(ii), (iii), (iv). The uniqueness is a direct consequence of Theorem U.

Assertion (a) must hold, for if there is a sequence of times t + Tn

such that *u(t )I X N < -, we can define

u(t) ,t < t n

v(t) - (:tn, Ultn) , t t < tn + c1/M M-

But v extends u past T for large n.

Assertion (b) is a direct consequence of (a). The last assertion follows from (1.26)

and (a).
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b



Appendix X

We begin with the proof of Lemma 1.2.

Proof of LeM 1.2. For (i), let f e x and

(A.1) 2 + 1.I14 f' c for R > I

R;:

Now we have

(A.2) f cI+x)l ' ({Ixi 1}If(x)l + f{Ix>l} x2
11+1xl 2)a  w 1 2

and
1 I dR

i2 20 1 Rx 2+1

Thus rubini's theorem and (A.1) yield

ff(x) dx " 1- R . Il.RL
f ( x ).. l d.

{IxI>l) 2 24 r 2.1
lxi R

2
e-1 +

2 1 R20+ dR - C
4u1- 1 N

We then use (A.2) to obtain X c LIIPa
) 

with continuous embedding.

To prove (ii), observe that f + f in L1(R ) implies that for R 0 r

2 ,~ {IxI(R}lfI lim inf 2 f(xl(4R)fnI
, - +Mn+" +_t,

4 li inf If I
n+" n r

and the result follows upon taking the suprema= over R > r in this inequality.

The next result is used in Proposition A.2 to establish the equivalence of (0.3) and

(0.3)' of the introduction.
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1 [N ) u)0,dfn
Proposition A.1. Let e 6 R, 8, 6 0. For u e L I o ) u ; 0, define

I(u) = sup1 uX)

s Lep i (x I'a1R 2 A+6.
R1 R (l+ixl2)

J(u) - sup 1 u(x)

R)11 R (1+1xl

Then, there exists cl - c 1( 6 ) < - such that

(A.3) J(u) 4 C11(u)

If 6 > 0, there exists c2 - c 2(6,6) < - such that

(A.4) 1(u) 4 c2J(u)

Proof.

The estimate (A.3) follows from the fact that for R ) 1, fxf • R,

1 ( +R2 I - 26 1
2 R (1R) (1+ix12

It is sufficient to prove (A.4) for A = 0 (then apply it to u instead of
(1+Ix)

u). One can also assume u(x) - 0 for 1xi < 1. Indeed if u - ul + u2 with

0 if xi 4 1 (u(x) if lXi 4 1
u(x) f I > u2(x) 0 if lxI > 1

then

1(u) V I(u1 ) + '(u2 )

and

u2 ) " r u(x) 2 f u(x) - J(u 2 ) 4 J(u)
u (Ix~ll (1+lxl) (IxlCI)

Thus we assume A - 0 and u(x) - 0 on (lxi C 1). We use that for all R > 0

U(x) • 1 468 R
2

-j-X) 4 R 0 32 (u)2 (i 61(-1e. ~x
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Hence for all n JN 0

u~x) 4 4 6( e J(u)

2 2

Suming these inequalities over all n > 0 gives

ru(x) 46 1 U
Cole 1+lxI ) 61-2-

whence (A.4).

Proposition A.2

Mi X = {f e Ll CR?); sup < u~hfxI1C~)C)~-

(ii) If e Ltoc(R)I f 1/Cm-I) e L (it c Cx

(iii) L I(P I ) C x

(iv) more generally, for 1 4 p(

(f e LFY (N) feL(p ) x
toc();f 1/(a-i) e pPN/2 Cx

Proof. For Mi, apply Proposition (A.1) with 6 - N, 6- 0 and recall (1.2),
M-1'

(1.3). Then Cii) follows from Ci). To obtain (iii), apply (A.4) with 6 0 0 and

--L- + M-. For (iv), set

(lflo 1/Ca-I) )p %2 w eL I( t)

Then

N1- -1) 1 1 N+

We now identify X0.

Proposition A.3. The space X 0  (U e X; lha NUN r 0) is the closure of L CR0) in X.r~

Proof. Let f e L 3)and se- + N. Sincea-I
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K -( lu* -1

Y f(I.IR'u f (IxI(R}'-f1 + f I Ifi
R R y {IxI4R)

we have

NO 4 lu-fl + 1 II

r r y L IN)

since 1.3r decreases with r, for r0 > 0

lii sup lul r lu-fl
r+ r 0

and

urn sup lul C inf{lu-fl : f e L (a,))
ro" r 0

Thus X0  contains the closure of L1(0 N ) .

Conversely, assume li- lul - 0. Then, if Ir is the characteristic function of
rtW r

flxl'r), u.1 r converges to u in X when r tends to * (whence the result since

u.1 r e LI (IN)). Indeed

a. 1!-' f~ixlj4Rl1uu*r' f Sr<lxj4R}iul ' Ulr  for all R ;I I

Proposition A.4.

(i) (f e Lo )RNI 1im If(x)lP 0x) - C xloc~~ xx+0

(ii) Let 1C p C and a e LLo,(§?) satisfy 0 and im OW

Then

(f • CocR) fP l(a-1) N LPCeP/ 2 )}

(iii) For 1 < p < , LP(p N C x 0
us-I 2

Proof. For (ii) let w - E[f101 /M.1))
p 

eo /2* Then
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N(I- 1 )

i f(ixCro)ll + R 0 [I{r0<t(R}IflP]l/p

NI- ) 1 N
ffixl~r If + R P (I+R2) UPI 2p( sup (O(x) )I)(f .)I/P

Hence

Ifir - 2 f- x<ro)'f' + c sup (O(x))
r W, 2 N r 0l<r
r

and ve deduce (ii). The assertion Ci) is obtained similarly. For (iii) note that

rfx- ] P 0 _IfP1 + N Il 1_ P-

z-1 2 a-i m-i 2

2 rn-i
and use (iii) with O(x) - (I+lx 

l

Proposition A.5.

(f e xi fpl/(- 1 ) e L(3 )I I not dense in X

Proof. By Proposition A.2 (i) and Proposition A.1, the claim is equivalent to saying that

L(3?) is not dense in

(v, e L I (-e), sup 1-- RItv1 < -1

with the obvious norm. Let

n on n Ixl n .. 12....

v(x) -

0 otherwise

If K-I < R ( N

1 09 R) lv(x)l C N n"-
1  c' < + .

while if e 7(?), tel 4 k,
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m :

-(a N kkN)

Hence

sup j t ' o 0, v) e Lz. (
u-14

I -43-
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